sexta-feira, 15 de abril de 2011

Ondas Eletromagnéticas


A GERAÇÃO DE ONDAS ELETROMAGNÉTICAS
Imagine uma antena de uma estação de rádio:
fig
Na extremidade da antena existe um fio ligado pelo seu centro a uma fonte alternada (que inverte o sentido a intervalos de tempo determinados). Num certo instante, teremos a corrente num sentido e, depois de alguns instantes, a corrente no outro sentido.
figfig
A velocidade de propagação de uma onda eletromagnética depende do meio em que ela se propaga.
Maxwell mostrou que a velocidade de propagação de uma onda eletromagnética, no vácuo, é dada pela expressão:
fig
onde fig é a permissividade elétrica do vácuo e fig é a permeabilidade magnética do vácuo.
Aplicando os valores de fig e de fig na expressão acima, encontra-se a velocidade:
fig
ou
fig
(valor exato)
que é igual a velocidade da luz. Nisso Maxwell se baseou para afirmar que a luz também é uma onda eletromagnética.
Podemos resumir as características das ondas eletromagnéticas no seguinte:
  • São formadas por campos elétricos e campos magnéticos variáveis.
  • O campo elétrico é perpendicular ao campo magnético.
  • São ondas transversais (os campos são perpendiculares à direção de propagação).
  • Propagam-se no vácuo com a velocidade "c" .
  • Podem propagar-se num meio material com velocidade menor que a obtida no vácuo.
Com isto, o campo elétrico ao redor do fio em um certo instante estará apontando num sentido e, depois, no sentido contrário.
Esse campo elétrico variável (E) irá gerar um campo magnético (B) , que será também variável. Por sua vez, esse campo magnético irá gerar um campo elétrico. E assim por diante .... Cada campo varia e gera outro campo que, por ser variável, gera outro campo: e está criada a perturbação eletromagnética que se propaga através do espaço, constituída pelos dois campos em recíprocas induções.
fig
Note que o campo elétrico é perpendicular à direção de propagação e o campo magnético também, o que comprova que a onda eletromagnética é uma onda transversal.
Além disso, o campo elétrico é perpendicular ao campo magnético, o que podemos verificar facilmente: quando um fio é percorrido por cargas em movimento, o campo elétrico num ponto próximo ao fio pertence ao plano do fio, enquanto o campo magnético está saindo ou entrando neste plano.
fig

ESPECTRO ELETROMAGNÉTICO
A palavra espectro (do latim "spectrum", que significa fantasma ou aparição) foi usada por Isaac Newton, no século XVII, para descrever a faixa de cores que apareceu quando numa experiência a luz do Sol atravessou um prisma de vidro em sua trajetória.
Atualmente chama-se espectro eletromagnético à faixa de freqüências e respectivos comprimentos de ondas que caracterizam os diversos tipos de ondas eletromagnéticas.
As ondas eletromagnéticas no vácuo têm a mesma velocidade , modificando a freqüência de acordo com espécie e, conseqüentemente, o comprimento de onda.
fig
** As escalas de freqüência e comprimento de onda são logarítmicas.
Fisicamente, não há intervalos no espectro. Podemos ter ondas de qualquer freqüências que são idênticas na sua natureza, diferenciando no modo como podemos captá-las.
Observe que algumas freqüências de TV podem coincidir com a freqüência de FM. Isso permite algumas vezes captar uma rádio FM na televisão ou captar um canal de TV num aparelho de rádio FM.
CARACTERÍSTICAS DAS PRINCIPAIS RADIAÇÕES ONDAS DE RÁDIO.
"Ondas de rádio" é a denominação dada às ondas desde freqüências muito pequenas, até 1012 Hz , acima da qual estão os raios infravermelhos.
As ondas de rádio são geradas por osciladores eletrônicos instalados geralmente em um lugar alto, para atingir uma maior região. Logo o nome "ondas de rádio" inclui as microondas, as ondas de TV, as ondas curtas, as ondas longas e as próprias bandas de AM e FM.
Ondas de rádio propriamente ditas
As ondas de rádio propriamente ditas, que vão de 104 Hz a 107 Hz , têm comprimento de onda grande, o que permite que elas sejam refletidas pelas camadas ionizadas da atmosfera superior (ionosfera).
fig
Estas ondas, além disso, têm a capacidade de contornar obstáculos como árvores, edifícios, de modo que é relativamente fácil captá-las num aparelho rádio-receptor.
Ondas de TV
As emissões de TV são feitas a partir de 5x107 Hz (50 MHz) . É costume classificar as ondas de TV em bandas de freqüência (faixa de freqüência), que são:
  • VHF : very high frequency (54 MHz à 216 MHZ è canal 2 à 13)
  • UHF : ultra-high frequency (470 MHz à 890 MHz è canal 14 à 83)
  • SHF : super-high frequency
  • EHF : extremely high frequency
  • VHFI : veri high frequency indeed
As ondas de TV não são refletidas pela ionosfera, de modo que para estas ondas serem captadas a distâncias superiores a 75 Km é necessário o uso de estações repetidoras.
fig

Microondas
Microondas correspondem à faixa de mais alta freqüência produzida por osciladores eletrônicos. Freqüências mais altas que as microondas só as produzidas por oscilações moleculares e atômicas.
As microondas são muito utilizadas em telecomunicações. As ligações de telefone e programas de TV recebidos "via satélite" de outros países são feitas com o emprego de microondas.
fig
As microondas também podem ser utilizadas para funcionamento de um radar. Uma fonte emite uma radiação que atinge um objeto e volta para o ponto onde a onda foi emitida. De acordo com a direção em que a radiação volta pode ser descoberta a localização do objeto que refletiu a onda.
fig
Luz visível
Note que nosso olho só tem condições de perceber freqüências que vão de 4,3x1014 Hz a 7x1014 , faixa indicada pelo espectro como luz visível.
Nosso olho percebe a freqüência de 4,3x1014 como a cor vermelha. Freqüências abaixo desta não são visíveis e são chamados de raios infravermelhos , que têm algumas aplicações práticas.
A freqüência de 7x1014 é vista pelo olho como cor violeta. Freqüências acima desta também não são visíveis e recebem o nome de raios ultravioleta. Têm também algumas aplicações.
A faixa correspondente à luz visível pode ser subdividida de acordo com o espectro a seguir.
fig
Raios X
Os raios X foram descobertos, em 1895, pelo físico alemão Wilhelm Röntgen. Os raios X têm freqüência alta e possuem muita energia. São capazes de atravessar muitas substâncias embora sejam detidos por outras, principalmente pelo chumbo.
Esses raios são produzidos sempre que um feixe de elétrons dotados de energia incidem sobre um obstáculo material. A energia cinética do feixe incidente é parcialmente transformada em energia eletromagnética, dando origem aos raios X.
Os raios X são capazes de impressionar uma chapa fotográfica e são muito utilizados em radiografias, já que conseguem atravessar a pele e os músculos da pessoa, mas são retidos pelos ossos.
fig
Os raios X são também bastante utilizados no tratamento de doenças como o câncer. Têm ainda outras aplicações: na pesquisa da estrutura da matéria, em Química, em Mineralogia e outros ramos.
Raios Gama
As ondas eletromagnéticas com freqüência acima da dos raios X recebe o nome de raios gama (g ).
Os raios g são produzidos por desintegração natural ou artificial de elementos radioativos.
fig
Um material radioativo pode emitir raios g durante muito tempo, até atingir uma forma mais estável.
Raios g de alta energia podem ser observados também nos raios cósmicos que atingem a alta atmosfera terrestre em grande quantidade por segundo.
Os raios g podem causar graves danos às células, de modo que os cientistas que trabalham em laboratório de radiação devem desenvolver métodos especiais de detecção e proteção contra doses excessivas desses raios.

Nenhum comentário:

Postar um comentário